产品说明书

二磷酸核酮糖羧化酶(Rubisco)检测试剂盒(微量法)

货号: PMK1245

保存: -20℃避光保存 6 个月

规格:48T/96T

适用样本: 植物组织

产品简介

1,5-二磷酸核酮糖羧化/加氧酶(Rubisco,EC 4.1.1.39)是植物光合作用中的一个关键酶,既控制着 CO_2 的固定,同时又制约着碳素向 Calvin 循环和光呼吸循环分流,其活性直接影响着光合速率。本试剂盒提供了一种简单的检测方法,用于检测植物组织样本的 Rubisco 的活性,其原理是在 Rubisco 的催化下,1 分子的核酮糖-1,5-二磷酸(RuBP)与 1 分子的 CO_2 结合,产生 2 分子的 3-磷酸甘油酸(PGA);PGA 可通过外加的 3-磷酸甘油酸激酶和甘油醛-3-磷酸脱氢酶的作用,产生甘油醛-3-磷酸,伴随着 NADH 氧化生成 NAD;在 340nm NADH 有特征吸收峰,而 NAD 没有此吸收峰,因此测定 340nm 吸光度下降速率可以代表 Rubisco 的羧化酶活性。

产品内容

试剂盒组分	规格		No to to the
	48T	96T	储存条件
提取液一	50mL	100mL	4℃保存
提取液二	50mL	100mL	4℃保存
试剂一	12. 5mL	25mL	4℃保存
试剂二	1	1	-20℃避光保存
试剂三	1	1	-20℃避光保存
试剂四	1	1	-20℃避光保存

自备耗材

酶标仪或紫外分光光度计(能测 340nm 处的吸光度) 96 孔 UV 微孔板或微量石英比色皿、可调节式移液枪及枪头 制冰机、低温离心机 去离子水 匀浆器

试剂准备

注意: 各组分(小管试剂)开盖前,请先低速离心。

提取液一: 即用型; 使用前, 平衡到室温; 4℃保存。 提取液二: 即用型; 使用前, 平衡到室温; 4℃保存。

试剂一: 即用型; 使用前, 平衡到室温; 4℃保存。

试剂二: 临用前配制,对于 48T,加 5mL 试剂一溶解;对于 96T,加 10mL 试剂一溶解,混匀备用。用不完的试剂-20℃避光分装保存,避免反复冻融。

试剂三: 临用前配制,对于 48T,加 5mL 试剂一溶解;对于 96T,加 10mL 试剂一溶解,混匀备用。用不完的试剂-20℃避光分装保存,避免反复冻融。

试剂四: 临用前配制,对于 48T,加 0.5mL 试剂一溶解;对于 96T,加 1mL 试剂一溶解,混匀备用。用不完的试剂-20℃避光分装保存,避免反复冻融。

产品说明书

工作液: 临用前将溶解后的试剂二和溶解后的试剂三按1:1混合,根据实验需求配制相应的体积。

样本制备

粗酶液制备:

- 1. 总 Rubisco 酶提取: 称取约 0. 1g 样本,加入 1mL 提取液一,冰浴匀浆,超声波破碎 1min (功率 20%或 200W,超声 3s,间隔 7s),8,000g,4℃离心 10min,取上清液,置冰上待测。
- 2. 胞浆和叶绿体 Rubisco 酶的分离: 称取约 0.1g 样本,加入 1mL 提取液一,冰浴匀浆,200g,4℃离心 5 min,弃沉淀,取上清在 8,000 g,4℃离心 10min,离心后取上清用于测定胞浆 Rubisco 酶活性,取沉淀加 1mL 提取液二,震荡溶解后超声破碎 1min(功率 20%或 200W,超声 3s,间隔 7s),8,000g,4℃离心 10min,取上清测定叶绿体中 Rubisco 酶活性。

注意:推荐使用新鲜样本,以保证酶的活力。建议测定总 Rubisco 酶活性,按照步骤 1 提取粗酶液,若需要分别测定胞浆和叶绿体中的 Rubisco,则按照步骤 2 提取粗酶液。如需测定蛋白浓度,推荐使用 BCA 法蛋白质定量试剂盒进行样本蛋白质浓度测定。

实验步骤

- 1. 酶标仪或紫外分光光度计预热 30min 以上,调节波长到 340nm,紫外分光光度计去离子水调零。
- 2. 操作表(下述操作在 96 孔 UV 板或微量石英比色皿中操作):

	空白孔 (μL)	测定孔(µL)
样本	0	10
去离子水	10	0
试剂四	10	10
工作液	180	180

3. 迅速混匀后于 340nm 检测,记录 20s 和 5min 20s 的吸光值,测定孔的记为 A_1 和 A_2 ,空白孔的记为 A_3 和 A_4 ,计算 $\Delta A_{3m} = (A_1 - A_2) - (A_3 - A_4)$ 。

注意: 空白孔只需测定 1 次。实验之前建议选择 2-3 个预期差异大的样本做预实验。如果样本吸光值不在测量范围内建议稀释或者增加样本量进行检测。

结果计算

- A. 使用 96 孔 UV 微孔板测定的计算公式
- (1) 按样本蛋白浓度计算:

单位的定义: 25 °C 中,每 mg 组织蛋白在反应体系中每分钟催化 1nmol NADH 氧化定义为一个酶活力单位。 Rubisco (U/mg prot) = [Δ A $_{\text{M}}$ × V $_{\text{反总}}$ ÷ (ϵ × d) × 10^{9}] ÷ (V $_{\text{#}^{\text{A}}}$ × Cpr) ÷ T=1286 × Δ A $_{\text{M}}$ ÷ Cpr

(2) 按样本质量计算:

单位的定义: 25℃中,每 g 组织在反应体系中每分钟催化 1nmol NADH 氧化定义为一个酶活力单位。

Rubisco (U/g 质量) = $[\Delta A_{M} \times V_{G\&} \div (\epsilon \times d) \times 10^{9}] \div (W \div V_{HW} \times V_{HA}) \div T = 1286 \times \Delta A_{M} \div W$

 $V_{\text{反总}}$: 反应体系总体积,0. 2mL=2×10⁻⁴ L,V_{提取}: 提取液体积,1mL; V_{#*}: 反应体系中上清液体积,0. 01mL; ϵ : NADH 摩尔消光系数,6. 22×10³L/mo1/cm; d: 96 孔板直径,0. 5cm; Cpr: 蛋白浓度(mg/mL); T: 反应时间,5min; W: 样本质量,g。

B. 使用微量石英比色皿进行测定的计算公式

将上述计算公式中光径 d: 0.5cm 调整为 d: 1cm 进行计算即可。

注意事项

- 1. 实验过程中请穿戴实验服、口罩和乳胶手套。请按照生物实验室的国家安全规定进行实验,尤其是在检测血样或其他体液时。
- 2. 本试剂盒仅用于实验室科学研究,如果本试剂盒用于临床诊断或任何其他用途,我们将不对任何后果负责。
- 3. 本试剂盒应在有效期内使用,并请严格按照说明书进行存储。
- 4. 不同批次号、不同厂家之间的组分不要混用; 否则,可能导致结果异常。
- 5. 勤换吸头,避免各组分之间的交叉污染。

相关产品:

产品说明书

PMK0999 辅酶 I NAD (H) 检测试剂盒 (微量法) PMK1000 NAD 激酶 (NADK) 检测试剂盒 (微量法) PMK1004 NADH 氧化酶 (NOX) 检测试剂盒 (微量法)

更多产品详情了解,请关注公众号: